|
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯 2 ?8 e0 D& R$ R6 @
- B" I+ M6 {/ ~) q; l% s4 y$ \
Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar
(4.42 MB, 下載次數(shù): 6)
2015-1-9 22:29 上傳
點(diǎn)擊文件名下載附件
第一部分 下載積分: 威望 -10 點(diǎn)
0 I' H3 U" v3 e" m& U9 S( V0 @1 S
% z1 [# @5 C ]
Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar
(3.39 MB, 下載次數(shù): 6)
2015-1-9 22:33 上傳
點(diǎn)擊文件名下載附件
第二部分 下載積分: 威望 -10 點(diǎn)
2 }& n: Y6 {& ?' Z+ `+ f! p' e
% g8 h- n" P- V/ Q8 {7 \! [* T- d; ]目錄
9 C9 V3 ? I0 d9 n, f Y8 q4 `0 z& u5 y/ O5 Q" s" N
Contents% {. D; S& Q2 e& w& `3 ?; k8 d
$ z8 ~3 |, d/ r* {- E
Preface page xvii: f) y& k/ t; j2 r
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
$ Y9 D1 d* P6 M B3 ?! S% P4 B! t1.1 Viscoelastic Phenomena 1/ ?+ m: N' n( D" ~" o
1.2 Motivations for Studying Viscoelasticity 3
* p/ B {' }' n# u4 V; t1.3 Transient Properties: Creep and Relaxation 3, j1 X2 M# q& {. w
1.3.1 Viscoelastic Functions J (t), E(t) 3( c- C6 y: A( p. {
1.3.2 Solids and Liquids 7& |( Q+ }; A. V) M& | k+ B
1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8. Y( o: z- ?6 V) A% W" t
1.5 Demonstration of Viscoelastic Behavior 104 f7 A+ J% K3 ~' _ C9 S; y
1.6 Historical Aspects 10
4 P9 m- e# R2 t1.7 Summary 11
/ U0 l/ n/ }9 t2 m2 V7 X1 N/ H6 Y1.8 Examples 11% W% `; |6 p [" a1 @7 c
1.9 Problems 12
: Z& w- T& A" o" ^. zBibliography 120 M" ^; n8 ~6 i* c- O2 C9 [7 G
) v0 L; i. j7 `4 b9 h% ~1 Q& ]6 ]) a
; A4 F( B- v1 X& g, n% _
1 W/ p& n/ o4 h1 a4 b9 C: D
! e/ I3 O) l6 p. U
+ |! d" l* R: d* c3 v: Q( X( z; i% A, ^. C7 ?8 j
2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
* `9 V$ B1 G# O2 z K2.1 Introduction 14/ s+ W. n6 r7 z5 ?8 k7 y
2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
7 R' H$ e1 z- [9 [% Y1 M2.2.1 Prediction of Recovery from Relaxation E(t) 14
" P0 i: F# W2 K2.2.2 Prediction of Response to Arbitrary Strain History 15; P" ]- D& W6 H& H+ f3 q- s6 ~0 F; a
2.3 Restrictions on the Viscoelastic Functions 172 D; ~1 L7 V+ f( v! h
2.3.1 Roles of Energy and Passivity 17
) h0 f1 q6 v+ V6 Z2.3.2 Fading Memory 18
7 k& G) ` A5 h5 {; V2.4 Relation between Creep and Relaxation 19' S2 w' C6 y8 Z
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19
: [: `, W+ t: \. I7 y/ z3 g4 w2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20. X/ m* }) z0 O/ D. c
2.5 Stress versus Strain for Constant Strain Rate 203 i* w$ t1 j! K- F1 V* G4 m! `
2.6 Particular Creep and Relaxation Functions 21: B5 s( M1 b0 g
2.6.1 Exponentials and Mechanical Models 21
) E7 I+ G+ x3 B' y) Y2.6.2 Exponentials and Internal Causal Variables 26
, @, R9 Y. ]( c2 _4 S6 b k- R+ p2.6.3 Fractional Derivatives 27
( B( K" [- } R" b. P' G1 n2.6.4 Power-Law Behavior 28
+ m" P' p. y, P+ ~5 w8 S; H6 X2.6.5 Stretched Exponential 29
! v2 @- M7 r9 l0 j8 [ j" G2.6.6 Logarithmic Creep; Kuhn Model 29
; K, n. Z% S T( z$ z5 W' N2.6.7 Distinguishing among Viscoelastic Functions 30
! p+ }/ r+ `- Y7 x2.7 Effect of Temperature 30
% \2 q' x" u$ ~3 Z& `$ c5 ^- D, ~2.8 Three-Dimensional Linear Constitutive Equation 33$ Q( u# _3 y6 j! }3 ^: S
2.9 Aging Materials 35% o ?6 l( |! j2 C# N
2.10 Dielectric and Other Forms of Relaxation 35
6 t$ G( O& n% E& J$ f1 E H/ A$ ^2.11 Adaptive and “Smart” Materials 36+ P" R K4 D* F. |1 w- {/ B! a1 M0 U& n; W
2.12 Effect of Nonlinearity 37
- z5 J+ N3 y4 e1 j. d+ C2.12.1 Constitutive Equations 37
3 \$ N" j! V, k" ?& L2.12.2 Creep–Relaxation Interrelation: Nonlinear 40
1 E* j( F3 g( f2.13 Summary 43
5 f. c! ? ]5 w) s2.14 Examples 43
. q& h3 T" K% t! q2.15 Problems 51
5 x, R3 |( o2 M' RBibliography 52
1 _0 K0 \5 F: ?. r, i& V, v$ a; V& s- T4 B2 L9 \8 \
# @& q2 ^3 B' d
r6 c1 b: ]' Q7 l, x- t2 S# _/ j& Q, ^) N
5 }' M1 g) }: _7 }# N* u+ A% H: g9 }% [3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551 P' i( \, X. T C7 O4 W; K8 O' T- j
3.1 Introduction and Rationale 55) f7 r0 C8 n/ y7 S: y, ~8 g: X ` H
3.2 The Linear Dynamic Response Functions E∗, tanδ 56
0 W; {" A( u" W3.2.1 Response to Sinusoidal Input 575 \) T! Y; ~% Y, }) L
3.2.2 Dynamic Stress–Strain Relation 593 @1 q# d1 C A: L, T( z* a3 `
3.2.3 Standard Linear Solid 62
6 D7 n5 ^/ C7 q* `! r! X3 _: S c. M* C3.3 Kramers–Kronig Relations 633 s" v6 m% }4 F/ u' S5 i3 h
3.4 Energy Storage and Dissipation 65
( T' B' A7 Z* z5 n/ y3.5 Resonance of Structural Members 67 M# l2 e) u% l( O
3.5.1 Resonance, Lumped System 67! }0 k; b. z* @
3.5.2 Resonance, Distributed System 71# l/ G4 ?. F3 o. u
3.6 Decay of Resonant Vibration 74" ?9 p1 X! P) i x O1 Q
3.7 Wave Propagation and Attenuation 77
* Y7 f$ x/ a1 `3.8 Measures of Damping 79" X- A0 @ }" c. u- W+ B3 Q
3.9 Nonlinear Materials 79
: f+ n7 C9 L( O3 B- f$ U3.10 Summary 81
& c @0 ^9 T3 W S3.11 Examples 81
0 _! i P9 {( ~6 e( k0 i3.12 Problems 88+ h, q, T8 z1 j' q% d8 |
Bibliography 89
# T5 n$ L( t1 _$ ~1 f* g
! f6 M. N Y# @( H$ H! U; t, d5 Y& t9 T
& b0 u0 R4 }" _$ f4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91
. }6 Q# N( f/ ~" g: O' i4.1 Introduction 91
' P" |- }0 Q! c) N- z4.2 Spectra in Linear Viscoelasticity 92
! k1 k* u. o1 T, D4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92% ~. p9 u9 k$ F. }4 ?# s
4.2.2 Particular Spectra 93# j! f' o0 H8 Y1 J; q- n: X
4.3 Approximate Interrelations of Viscoelastic Functions 95% Q2 c$ M- ^) A5 W# d9 R; H0 Q
4.3.1 Interrelations Involving the Spectra 952 Z* ~8 J( D" Y ]8 t9 z* m3 Y0 ?
4.3.2 Interrelations Involving Measurable Functions 98
% A& p& \* C M: J/ l( M' H9 W. g4.3.3 Summary, Approximate Relations 101
$ j, r# y/ G2 C, X/ g2 j6 D7 `0 o4.4 Conceptual Organization of the Viscoelastic Functions 101+ N3 W3 _. V; b0 B+ [: \
4.5 Summary 104
2 ^0 i+ _. D+ ?# w& Q8 J& h# B4.6 Examples 1041 a* {' E1 M, ^
4.7 Problems 109 ^6 Z! \+ X. N0 a+ L
Bibliography 109; Q) I' m: m0 l7 o, V* i
8 b d& K( [2 S. D V& D& J3 }' h( ?# D8 m
/ v5 ]4 B- o2 |7 @. c, N5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 1119 O _/ }$ C% z
5.1 Introduction 111$ [, E1 F# K7 ^' k
5.2 Three-Dimensional Constitutive Equation 111
. u5 z0 l$ n5 j H0 G5.3 Pure Bending by Direct Construction 1123 d' t/ }" c9 {3 t( c0 |7 r+ K
5.4 Correspondence Principle 114( G" s* o% m' H* A5 K& h. Z, q3 D
5.5 Pure Bending by Correspondence 116
+ c4 l/ n# q& e5.6 Correspondence Principle in Three Dimensions 1162 y2 ?# F- _1 _- F
5.6.1 Constitutive Equations 116
4 i; ~+ |2 U+ i5.6.2 Rigid Indenter on a Semi-Infinite Solid 1177 ^' W# q- }- [# ?
5.6.3 Viscoelastic Rod Held at Constant Extension 119- Q* o, y$ X. r
5.6.4 Stress Concentration 119
, C/ ]9 C5 N: s5.6.5 Saint Venant’s Principle 120: \* f4 `& L2 e: B8 d: T; Y
5.7 Poisson’s Ratio ν(t) 121
4 R0 X, w* y4 A% Y @0 S5.7.1 Relaxation in Tension 121
+ c2 G0 j7 A7 r8 c4 x5.7.2 Creep in Tension 123
0 Q0 f( a# c4 |/ H5.8 Dynamic Problems: Effects of Inertia 1240 Q/ Q" V* o2 _8 h0 o5 b# G; }
5.8.1 Longitudinal Vibration and Waves in a Rod 124
( y" k' b/ z8 l' f1 x5.8.2 Torsional Waves and Vibration in a Rod 125
0 ~: ]8 i1 W8 ~ J6 ^. V5.8.3 Bending Waves and Vibration 1280 T8 ]' V) C; _
5.8.4 Waves in Three Dimensions 129
+ c( I' w: j8 M$ s5.9 Noncorrespondence Problems 131: ^9 g& @: L9 R9 h( b/ Z
5.9.1 Solution by Direct Construction: Example 131. H8 M s8 a1 ?! X
5.9.2 A Generalized Correspondence Principle 132 T1 y$ W6 l) ]3 F* h2 ]
5.9.3 Contact Problems 132$ f* h+ Z% E# ?3 r) G& n
5.10 Bending in Nonlinear Viscoelasticity 133
0 u2 F/ \4 Y2 ?) R( `- |; Y: v5.11 Summary 134
! D" d8 w+ g3 ^$ r: x. J9 B5.12 Examples 134
1 C9 k0 |. N0 A8 t5.13 Problems 1422 b$ }: J# m9 f W( ~: T- o: }) `
Bibliography 142
2 F+ o/ O3 y; {# j' O# I6 u
7 d0 Z3 C' |: c
/ c& @, p' U( V* T& S$ b
+ L8 x( ~3 P. J K6 w6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1457 B/ Y4 B: d3 L! r
6.1 Introduction and General Requirements 145
5 Y" I0 Y# [: w6 o8 _0 h6.2 Creep 146! [" ?8 ]9 r: N1 a
6.2.1 Creep: Simple Methods to Obtain J (t) 146# t- j) \# h# A. y% g
6.2.2 Effect of Risetime in Transient Tests 146
8 {1 x' e) { z# J7 m4 V" j6.2.3 Creep in Anisotropic Media 1480 M% D/ d/ }: V/ j% t
6.2.4 Creep in Nonlinear Media 1489 j L' J! J8 g( z
6.3 Inference of Moduli 150
7 U7 q6 m8 G6 f" |0 Q6.3.1 Use of Analytical Solutions 150+ ]) P# i! D( e
6.3.2 Compression of a Block 1519 p7 p- c1 O: c. n" ^% M+ n% e) K
6.4 Displacement and Strain Measurement 152
" b& l( `/ V% c+ d6.5 Force Measurement 156
$ V$ R+ F5 u2 R2 j" d6.6 Load Application 1578 P1 N& R9 H4 H+ {" o3 o' @
6.7 Environmental Control 157
}( R' T( q0 |* b' H6.8 Subresonant Dynamic Methods 158: _% N9 h8 Q( X% `9 ~% \
6.8.1 Phase Determination 158$ b# Y+ s& |$ w7 S8 ^. |1 j
6.8.2 Nonlinear Materials 160
: t# |' C6 W) S; e2 a% X6.8.3 Rebound Test 161" p' K$ j4 j: B! E
6.9 Resonance Methods 1619 z) }) m; t% a2 @) E0 P3 o
6.9.1 General Principles 161
3 B2 D3 c3 y& `0 B% U6.9.2 Particular Resonance Methods 163
5 @9 u2 b+ J4 R, h8 o. U$ `- q4 n/ A6.9.3 Methods for Low-Loss or High-Loss Materials 166$ ]5 e5 [) n5 {! s! U: D2 Y) ~
6.9.4 Resonant Ultrasound Spectroscopy 1688 w/ f& g4 \3 i4 U4 ~$ M# ~
6.10 Achieving a Wide Range of Time or Frequency 171) s" Z) M& |8 i; {9 h2 F
6.10.1 Rationale 171; L0 H! i3 [9 @) k
6.10.2 Multiple Instruments and Long Creep 172
@- I. Z1 {) |$ d* O7 G- \6.10.3 Time–Temperature Superposition 172! ^' ?1 F: T/ C& w
6.11 Test Instruments for Viscoelasticity 173( _ n% O0 w8 ~& g
6.11.1 Servohydraulic Test Machines 173$ g6 C4 j& q4 o% K& b7 s3 o
6.11.2A Relaxation Instrument 174
2 p5 q( X. S0 ~6.11.3 Driven Torsion Pendulum Devices 174 q) U% M$ n9 D9 l9 S f
6.11.4 Commercial Viscoelastic Instrumentation 178
7 l+ W! H& `& T' ]4 a# `( k. z6.11.5 Instruments for a Wide Range of Time and Frequency 179- q; I7 u% Z, V' p6 W K+ I
6.11.6 Fluctuation–Dissipation Relation 182
$ [: K# D* T. h6 k: e3 s- o6.11.7 Mapping Properties by Indentation 183
" F9 s5 A; `3 R6.12 Wave Methods 184
' `$ y( V; N' o( R( Z: A; X6.13 Summary 188
2 x3 g# Y! Y: Z# Z/ W7 U; m6.14 Examples 188# F, t3 @8 J2 s9 j
6.15 Problems 200% U8 t% h. ^9 j( {/ ^& {, m2 j
Bibliography 201, i3 I$ t n; r! W
$ r7 g* V( u7 M" X5 f5 e
0 l7 _& e& `0 |8 U9 m+ ]
1 U0 u& n+ d r1 p7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 2073 x0 E* B x: H; n# `
7.1 Introduction 207# h$ @7 U9 p( W4 s, F( ?; _# I
7.1.1 Rationale 207! @1 b8 t) ^/ q0 x' R" _8 k
7.1.2 Overview: Some Common Materials 207
6 P2 X( ^! }+ U0 W7.2 Polymers 208) @; D! i: ^. s
7.2.1 Shear and Extension in Amorphous Polymers 2088 @4 A# K9 A% W! ]
7.2.2 Bulk Relaxation in Amorphous Polymers 212
4 N! b; N0 v) s# Y8 [ N& Z5 w7.2.3 Crystalline Polymers 213
: Y, x' L( V) W) X7.2.4 Aging and other Relaxations 214
- o5 [4 x7 ~" D7.2.5 Piezoelectric Polymers 2143 `# ]6 a, U6 {8 U% K
7.2.6 Asphalt 214
6 y0 a; F: e6 V7.3 Metals 215: A2 N z( I- `+ w( F
7.3.1 Linear Regime of Metals 215
' C2 D% K+ y6 L4 o. p7.3.2 Nonlinear Regime of Metals 217% D( q9 M' T% J& F6 n- m( r+ t
7.3.3 High-Damping Metals and Alloys 219
* M" F1 l1 B5 c# [) j" Y7.3.4 Creep-Resistant Alloys 2248 ?* Y/ E+ T& x# E! c/ g
7.3.5 Semiconductors and Amorphous Elements 225' P0 V B. J3 W. d+ p
7.3.6 Semiconductors and Acoustic Amplification 226. n6 |+ r4 T* T* A7 g2 g
7.3.7 Nanoscale Properties 226# A8 K9 K3 ]& i% x% L/ r& K, S
7.4 Ceramics 227
, |8 U, p! J, B# P7.4.1 Rocks 227
. L$ E1 a2 t/ s1 }7.4.2 Concrete 229" E' [; a# P, D( B
7.4.3 Inorganic Glassy Materials 231
! l/ {" b U" p6 N0 ~4 J1 @$ _7.4.4 Ice 231
2 E# x+ i9 N: v7.4.5 Piezoelectric Ceramics 232+ }. \5 B; r* O% e' ~
7.5 Biological Composite Materials 2337 @# b% ]! I3 h8 _
7.5.1 Constitutive Equations 234
5 D8 A- c0 Q9 h; O7.5.2 Hard Tissue: Bone 2343 c9 _. L0 _& l* Y! u5 f; u
7.5.3 Collagen, Elastin, Proteoglycans 236
+ q% u8 [9 I: ?3 [6 b7.5.4 Ligament and Tendon 2375 _; \2 Q. V9 N4 l7 Q
7.5.5 Muscle 240% y; L+ m% [( c+ v& Y# z% ?4 Z
7.5.6 Fat 243: }! f# }) S& a; Q& H
7.5.7 Brain 2439 P/ @$ Z( H# H& \1 O ]
7.5.8 Vocal Folds 244
9 \1 D& b* n7 `% L$ a, m r7.5.9 Cartilage and Joints 244
6 S6 Z" m; z% [# G, [: U5 U. V7 k6 B3 [7.5.10 Kidney and Liver 246/ w* o1 H3 h4 `
7.5.11 Uterus and Cervix 246! B2 G2 x3 a" ~6 `# v+ d; j4 G
7.5.12 Arteries 247
- h9 X- Z: H9 }& i7.5.13 Lung 248/ {6 o4 k2 b3 ?$ u
7.5.14 The Ear 248
/ w' K5 k7 {4 O8 w7.5.15 The Eye 249) e6 E: w( J- H/ f F
7.5.16 Tissue Comparison 251( \( X, J8 k% @0 f
7.5.17 Plant Seeds 252( b6 i! M" q: Q* e
7.5.18 Wood 252
3 r; a' P# S$ U' C$ \. i( m7 @/ ^7.5.19 Soft Plant Tissue: Apple, Potato 253
{; Z3 l/ K" X5 E6 ]$ m) B7.6 Common Aspects 253
. j5 H6 k* u7 V, W0 `8 W: y7.6.1 Temperature Dependence 253
/ { ]+ \4 U( W% ~1 M1 C7.6.2 High-Temperature Background 254
, h- _8 o0 e0 {7.6.3 Negative Damping and Acoustic Emission 255
2 L( R3 ]% [3 ?7.7 Summary 255+ ?4 q3 P( ]- [% s! t ~
7.8 Examples 255
0 o" v/ c# z4 g5 X0 `7.9 Problems 256' s0 [% ~ q& S9 e: O; w
Bibliography 257
0 t( W& o% C6 o; ~ @! D! N2 q' |& F9 K% c c
" Z* l: Q# P2 e" @5 u+ j( U: {/ \/ W
+ A1 [3 F3 G. \: t7 P: @% n7 t! u$ {8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
! a/ n6 `1 V0 {- F' c8.1 Introduction 271
$ P& d/ |! g5 ]% _5 Y8.1.1 Rationale 271
7 g- J6 _. z; c. F5 W8.1.2 Survey of Viscoelastic Mechanisms 271
3 Q& Y; ?& p& k- r+ x8.1.3 Coupled Fields 273: L+ }5 ]' h7 y [4 v. y
8.2 Thermoelastic Relaxation 274
! z" k, _# u8 K4 h' _$ M8.2.1 Thermoelasticity in One Dimension 274: M; A X z# H
8.2.2 Thermoelasticity in Three Dimensions 275
" _8 k; \* O9 \& j) y" E9 p0 p8.2.3 Thermoelastic Relaxation Kinetics 276) d3 w( ?; O2 `* \( ^3 F. E
8.2.4 Heterogeneity and Thermoelastic Damping 278: q3 _, F# Q) W) S
8.2.5 Material Properties and Thermoelastic Damping 280
^# O- F1 U( J% p; q( `0 T8.3 Relaxation by Stress-Induced Fluid Motion 280
6 b" F0 o+ u. V( ^, ]8.3.1 Fluid Motion in One Dimension 280
: U! z0 i. A' b- d3 B2 s" a8.3.2 Biot Theory: Fluid Motion in Three Dimensions 2813 k" N y. G7 a9 B% z0 T
8.4 Relaxation by Molecular Rearrangement 286. k0 e+ x" B1 a- f% W. B
8.4.1 Glassy Region 286, i. U# ]3 m# |4 v% n9 W
8.4.2 Transition Region 287* ?# ]& ]5 L4 \5 M. E. F
8.4.3 Rubbery Behavior 289
5 `) [! J3 ?( C( H4 Z8.4.4 Crystalline Polymers 291
7 M% t) E( O) I( U) C4 M% p8.4.5 Biological Macromolecules 292% J6 T8 H) H0 e+ T3 s
8.4.6 Polymers and Metals 292! D& ~' r6 b: B% l( S% f1 r% ?# S
8.5 Relaxation by Interface Motion 292
/ X2 |. Q. q* @6 t! a8 Z/ t8.5.1 Grain Boundary Slip in Metals 292& l5 o' x$ C+ W! m5 z2 K, \
8.5.2 Interface Motion in Composites 2944 L* L- v9 ^# k1 A# J7 r& ]' `
8.5.3 Structural Interface Motion 294# [0 O/ i6 o" o: }+ k
8.6 Relaxation Processes in Crystalline Materials 294+ i' G' u) Z Y8 m1 J/ m9 A- \
8.6.1 Snoek Relaxation: Interstitial Atoms 294
0 R F6 n% G! } A8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298' x2 b8 U7 U5 p" C$ y. f
8.6.3 Gorsky Relaxation 299
8 I4 Z5 c: M; T C( t4 h8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 3005 C- F; k4 R& `" I
8.6.5 Bordoni Relaxation: Dislocation Kinks 303# f+ @" C" [' W8 }
8.6.6 Relaxation Due to Phase Transformations 305- t A$ |- y ~! B
8.6.7 High-Temperature Background 314) n+ l& i/ N/ U% G$ v2 {
8.6.8 Nonremovable Relaxations 315* N# O# B% \2 f7 a7 k) e
8.6.9 Damping Due to Wave Scattering 316
* p# s0 t" D1 z3 _! d8.7 Magnetic and Piezoelectric Materials 3167 N# r2 \% v2 X8 r
8.7.1 Relaxation in Magnetic Media 316
: @$ w( a2 Y" N! A8 T2 ?0 |8.7.2 Relaxation in Piezoelectric Materials 318/ n4 M- s- @* h
8.8 Nonexponential Relaxation 322
! ^$ g$ b3 ~0 r4 `3 Y$ J8.9 Concepts for Material Design 323
4 T: t0 y. N5 V4 c2 p8 |) ?8.9.1 Multiple Causes: Deformation Mechanism Maps 323- x5 ?+ s7 s0 w
8.9.2 Damping Mechanisms in High-Loss Alloys 326! k. n7 {+ m$ ]; H- P; X) ]% L: T
8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326
, [: a5 y$ i3 K8.10 Relaxation at Very Long Times 327( m8 E3 Z+ z' D+ B+ h
8.11 Summary 327. h% ?. I* O3 v/ `' o% g" r
8.12 Examples 328
( z; v5 l( l; Z7 Z4 ] a, i8.13 Problems and Questions 3320 \9 Q5 t* B) G* M, |
Bibliography 332
9 w$ F, K8 j- l. W! B+ E7 t( @' @6 K9 y1 A
$ @2 S1 `% f/ Y2 I; K# M
; K! Y0 c5 P- @& @# d, K
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341
, Z4 \8 z4 v, }% B" u6 @ j9.1 Introduction 341
( G2 G Q) N$ {* r6 ~9.2 Composite Structures and Properties 341
* h* x% E E7 y* t# U, T% k' B9.2.1 Ideal Structures 341
0 ~6 B* ~8 W) y" d: A( K8 Q% d9.2.2 Anisotropy due to Structure 342
9 E/ V& d) `' n2 h9.3 Prediction of Elastic and Viscoelastic Properties 344
6 J/ ]! a8 F& J# T9.3.1 Basic Structures: Correspondence Solutions 3449 s) L, X% M" c% j: a
9.3.2 Voigt Composite 345
) q1 V' U) U8 K" f O; L q9.3.3 Reuss Composite 345
" ~ W& q' V2 l7 K+ I9.3.4 Hashin–Shtrikman Composite 346( O7 R+ O* y3 U: P# M3 J; y, t
9.3.5 Spherical Particulate Inclusions 347! q3 p: ?+ |- z$ h
9.3.6 Fiber Inclusions 349
}8 Q2 L0 h) ~+ G- e8 e% s" P$ b- J9.3.7 Platelet Inclusions 349
1 [. s# N& g2 t6 H: E' \ X9.3.8 Stiffness-Loss Maps 350. v" h$ [1 J; C% c Y" B% ~5 D
9.4 Bounds on the Viscoelastic Properties 353
4 g5 M+ O6 x$ O+ M1 S9.5 Extremal Composites 354
% n* K; P, D8 z: j0 s0 Q9.6 Biological Composite Materials 356
, N$ } t8 R% S6 j, G8 h9.7 Poisson’s Ratio of Viscoelastic Composites 357
" v- e' j9 W4 r7 H7 R" b9.8 Particulate and Fibrous Composite Materials 358& B! N9 ]7 Z/ R6 \# e
9.8.1 Structure 358
3 r1 y( T5 i% t I9.8.2 Particulate Polymer Matrix Composites 359
3 @9 h5 L7 T' W4 g9.8.3 Fibrous Polymer Matrix Composites 361
( }6 A6 H2 b& i8 Q' k5 [, H1 L6 ?9.8.4 Metal–Matrix Composites 3620 Q. W4 c9 ^7 T- k, p
9.9 Cellular Solids 363
$ a$ h+ Y6 g1 C; z* |) ?9.10 Piezoelectric Composites 3668 L% b9 ^9 f7 |) [4 U0 l7 y* H
9.11 Dispersion of Waves in Composites 3666 M' k* C% T2 Y, X, A
9.12 Summary 367
# @7 K$ c' i, G& l1 }9.13 Examples 367
5 y3 S( W* Q5 S) k# W9.14 Problems 3704 o l$ R* A7 J+ }; j4 ~
Bibliography 3708 N# `" J. K; ]3 {
; V- z- R$ T& r3 B" k+ J* e
5 T' K L' A+ G8 _- M
6 O) e9 M2 r1 ?9 B; g) R; b
10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377
, ^( `+ O% u4 u& t8 ^" Q, m10.1 Introduction 377: q) t0 x; d k- Z$ I
10.2 A Viscoelastic Earplug: Use of Recovery 377' b9 q7 g( p( X$ X$ C j
10.3 Creep and Relaxation of Materials and Structures 378
5 ?2 `% h: S3 D: t5 I% s. p10.3.1 Concrete 378
3 R' R0 K* J- c- k8 G10.3.2 Wood 378
% v3 C" L+ v7 Z10.3.3 Power Lines 379
$ q& B* l+ A% j# q! g2 Q. y10.3.4 Glass Sag: Flowing Window Panes 380
$ |+ g: y: `, S7 W10.3.5 Indentation: Road Rutting 3806 w; s B! P6 w
10.3.6 Leather 381 \: M2 j* E n* m$ Y7 {
10.3.7 Creep-Resistant Alloys and Turbine Blades 381
1 Z9 x! g3 h: M$ b) d& T3 b10.3.8 Loosening of Bolts and Screws 382
( ]8 Z) Z8 r/ @" j! a10.3.9 Computer Disk Drive: Case Study of Relaxation 3841 e- G/ d! A8 G; }. p. ~$ S, q
10.3.10 Earth, Rock, and Ice 385' R8 t$ z% ?( `, O( v
10.3.11 Solder 386
- }# t/ f @8 h1 [10.3.12 Filamentsi nL ight Bulbs and Other Devices 387
( b1 k6 y4 F* {! [10.3.13Tires: Flat-Spotting and Swelling 388
5 j2 q$ d2 ^+ E1 d( j10.3.14Cushionsfor Seats and Wheelchairs 3880 R- c! B! T9 v: U" E
10.3.15 Artificial Joints 389, D8 h6 u' M+ l
10.3.16 Dental Fillings 3897 B7 U) M7 ^7 b, e. J/ v
10.3.17 Food Products 389
- c- K6 `4 _/ V ~5 c1 G$ ~10.3.18 Seals and Gaskets 390
1 C `: z( c' E9 p; _10.3.19 Relaxationi nM usical Instrument Strings 390
/ P: D5 v( F2 t10.3.20 Winding of Tape 3918 d. x3 Q1 I. t
10.4 Creep and Recovery in Human Tissue 391
& O) n' A0 I ?) w$ _ ]' i10.4.1 Spinal Discs: Height Change 391
, i9 k U& X7 r" S: h/ I3 w10.4.2 The Nose 392
9 _; b1 `5 t& j5 u4 f/ Z' u/ N10.4.3 Skin 392
* b. h2 ~4 t$ l, E/ Q7 O+ i10.4.4 The Head 393
9 S/ Z# Z9 D2 N, \: o9 F- P% |+ L' n10.5 Creep Damage and Creep Rupture 394
5 i. f J. S8 O( q10.5.1 Vajont Slide 394
5 N5 o/ o: P& S0 U" X( j10.5.2 Collapse of a Tunnel Segment 394( i6 ^0 J( i9 r; p# B
10.6 Vibration Control and Waves 394
. Y! i; ?) s2 G. i10.6.1 Analysis of Vibration Transmission 394/ k) V; l2 Q0 N* x! `" D
10.6.2 Resonant (Tuned) Damping 397
2 e/ ~! i1 v( L4 d7 u a% ?( @10.6.3 Rotating Equipment Vibration 397( ^! _7 y: V2 c$ a( H+ e+ [% i; ?6 }$ ~
10.6.4 Large Structure Vibration: Bridges and Buildings 3982 r$ ]4 B& c- y" o- P
10.6.5 Damping Layers for Plate and Beam Vibration 399
' V! o8 R' B' F3 P- J0 ~ ^10.6.6 Structural Damping Materials 4009 R0 J# A) h+ \" e- z; d
10.6.7 Piezoelectric Transducers 402. D. ?/ y$ O z' C2 c( u( Q
10.6.8 Aircraft Noise and Vibration 4025 o5 W# T- J G- v6 M; E; h
10.6.9 Solid Fuel Rocket Vibration 4043 g" ?6 P1 ^- v- }
10.6.10 Sports Equipment Vibration 404; p' v+ q4 E3 ?, `" e# F
10.6.11 Seat Cushions and Automobiles: Protection of People 404: @/ x8 P- G N ?/ j9 z6 x
10.6.12 Vibrationi n ScientificI nstruments 406
- h; O% w- A) `$ k* y$ ^+ ?% p10.6.13 Waves 406; G! |0 p+ P7 e l/ F" b9 Z
10.7 “Smart” Materials and Structures 407$ \" n* S0 e+ o( J3 v; B' a
10.7.1 “Smart” Materials 407/ F: D: |1 b/ B# C$ R
10.7.2 Shape Memory Materials 408* Z* `* j) u' A6 \
10.7.3 Self-Healing Materials 409
: _2 h" L& h) r7 _* z10.7.4 Piezoelectric Solid Damping 409, i8 k4 x V, M; z/ ]2 Y$ k+ i0 R
10.7.5 Active Vibration Control: “Smart” Structures 409
9 S7 h4 X' ~; g0 n, e3 G8 @10.8 Rolling Friction 409
' m- C* f& @! L5 C) T. I' j! w- \6 T10.8.1 Rolling Analysis 410
! u2 h" `9 {2 n10.8.2 Rolling of Tires 4113 i$ t6 E, X8 u$ w
10.9 Uses of Low-Loss Materials 412
. f2 c3 G7 o% `: P/ k4 l10.9.1 Timepieces 412
4 m; g$ u B5 T- b6 `2 j& O. Z0 x10.9.2 Frequency Stabilization and Control 413& @- C& s6 l& X( [; g
10.9.3 Gravitational Measurements 4131 C7 i) }0 G8 H% E% l! m, V
10.9.4 Nanoscale Resonators 414
# X/ @( g, K6 c+ S4 |/ x. F# d3 W' h& ~9 L10.10 Impulses, Rebound, and Impact Absorption 4149 W3 F T- F- T/ j
10.10.1 Rationale 414% v( r' j1 L0 u! Y: ?- g
10.10.2 Analysis 415: V/ o1 s5 [5 `9 Q1 ~+ B
10.10.3 Bumpers and Pads 418
+ c4 i+ F ~- N8 P10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419( l$ I; M8 [) [, O ^; I
10.10.5 Toughness of Materials 419
8 B7 @& v |; ^3 ~1 P10.10.6 Tissue Viscoelasticity in Medical Diagnosis 4204 p$ G Z+ J& a- {3 b/ A: V
10.11Rebound of a Ball 421' j9 ~1 e: e" [
10.11.1 Analysis 421! n5 v+ _) V, _5 |0 Y, Y
10.11.2 Applications in Sports 422
; ?6 i5 Q8 h% ~6 _& b) Q2 d# @10.12 Applications of Soft Materials 424
& V! t* A$ `1 z' l/ F# q, l8 J10.12.1 Viscoelastic Gels in Surgery 424- n& Y; ]+ ~; l$ S, h
10.12.2 Hand Strength Exerciser 424
. g, k1 Y4 n, v4 \10.12.3 Viscoelastic Toys 424 t( t' ~; S: _* P
10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425/ d! N! P, i3 \1 I: f" G
10.13 Applications Involving Thermoviscoelasticity 425
8 a3 L! t) p; l: ^& g10.14 Satellite Dynamics and Stability 426 |, M0 l. u4 y
10.15 Summary 428/ C4 ]7 T/ Y+ R7 d. x
10.16 Examples 429
' _3 x/ |4 v6 c( {5 b3 O& L10.17 Problems 4313 g3 [1 n4 _, J
Bibliography 4315 [ k% ?( h( p6 Y# t, J+ `2 i+ v
% _2 ?) j) B* m4 k. ?$ C$ B& w
, S0 R7 L: ~ k8 r# }, z2 d3 P+ Y; ]
A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441. Y/ k6 F/ G; `; S* a+ ^" v
A.1 Mathematical Preliminaries 4415 G) ]6 c+ N: K9 y# r' g0 a
A.1.1 Introduction 441
3 n6 q! u7 y0 x" Y* E( dA.1.2 Functionals and Distributions 441( x6 z% A% Z- q( J. k; L
A.1.3 Heaviside Unit Step Function 442- u$ @/ }7 f( @6 a
A.1.4 Dirac Delta 442
, ^6 p R9 _. L/ c: HA.1.5 Doublet 443
' q! S( {& I7 mA.1.6 Gamma Function 445
$ W) G4 F6 w* w) ]' u( B6 XA.1.7 Liebnitz Rule 4456 ]3 K1 N K {6 C# D" f0 R) c
A.2 Transforms 4453 G/ U$ p2 B3 E8 }3 r8 J
A.2.1 Laplace Transform 446
* i5 w, e# Z! ?. e1 Q% M. xA.2.2 Fourier Transform 446* S# U% W t# _+ R8 l& s
A.2.3 Hartley Transform 447
. S, A; `9 z' d- n0 b% dA.2.4 Hilbert Transform 447
# |( g3 {5 E! X$ J) sA.3 Laplace Transform Properties 448
- B: h) _/ i9 \A.4 Convolutions 449; g+ x4 X& p) d( I( c9 \
A.5 Interrelations in Elasticity Theory 451
0 Y3 p4 P( r0 ~. a. h; S0 MA.6 Other Works on Viscoelasticity 451
2 c4 ]7 X2 o5 w, Y& mBibliography 452
+ o* ^" y/ c' b5 E; V: D9 x9 u5 y) M3 d6 ^# {9 ~# L, I9 U
6 {# [1 R# M8 p: h6 a9 c. P3 qB: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4555 m$ L1 ^( h, @* |- j7 T* p
B.1 Principal Symbols 455. B/ w. a9 f& C5 x
Index 457
; K0 S! V$ `& F6 ]4 O" L
! y0 T+ F* }- m! A/ ~
! Z: u/ m+ r5 l- Q0 {' c% e0 w5 G5 O |
|