愛貓人士薛定諤 發表于 2016-5-19 20:21
第一眼真的被騙了,稀里糊涂就底x高 /2 了( [. M5 k9 F; s5 w) e
外接圓就能解釋* `6 m: ~2 k ?' a" Y+ t3 P
硬要解析的話,設坐標用向量就可以了
pacelife 發表于 2016-5-19 22:379 ~- f' A! p' C+ r# Y9 t
這個證明沒這么復雜吧,解個方程就出來了:
zerowing 發表于 2016-5-19 22:46! |. o1 ?7 w5 w! m
呵呵,挺有意思,摻合一腳。
3 K% Q' z8 T8 R: G0 g
CD^2=AD*BD
crazypeanut 發表于 2016-5-19 22:523 T* e) W0 ]) y' N" {( F# r. k
“斜邊為10的直角三角形,斜邊高最大值為5”
“直角三角形,斜邊對應的高不能大于斜邊的一半”
2266998 發表于 2016-5-19 17:419 ]8 A1 D4 K! c: o; l
米國佬,最重視基礎了,許多大公司入職都考類似東西,就是看你最基礎的東西是不是懂,國內公司,主要是要你 ...
crazypeanut 發表于 2016-5-19 19:12. H+ o2 p, z; o& |5 q0 g- _
這樣就對了,剛才自變元沒選對,算是建模不正確吧
zah977 發表于 2016-5-21 13:428 }8 g$ Z) S7 x# B
在直角三角形中,斜邊上的高等于斜邊的一半。這是一條定理
zah977 發表于 2016-5-21 13:426 l& d3 X$ Z! O; `7 ?
在直角三角形中,斜邊上的高等于斜邊的一半。這是一條定理
鬼魅道長 發表于 2016-5-20 10:24
幾何原本是老美的必讀書啊,據說林肯每次出門都必帶。
話說樓主解得過于復雜了,兩句話就能說明白。直 ...
DCHY2015 發表于 2016-5-22 12:07! [. Y- X. c% L. \& G9 d3 _
已知直角三角形的邊分別為abc,斜邊c上的高為h。
1.一個數的平方大于等于0,得(a-b)2≧0,則a2+b2≧2ab. ...
慕圣 發表于 2016-5-25 10:03
確定面積是ch而不是一半
skyloss 發表于 2016-5-19 18:43' n/ z4 j; b' k; X
我覺得主要是考察循規蹈矩的能力還是創新需要的質疑能力。
或許有的公司就需要悶頭執行的,不告訴你為什么 ...
米fans 發表于 2016-5-19 19:24
這題目有問題。高的平方等于被截取兩段的乘積,10的長度拆成兩段的平方最大值為25,顯然36是不對的。
zah977 發表于 2016-5-21 13:42
在直角三角形中,斜邊上的高等于斜邊的一半。這是一條定理
Pascal 發表于 2016-5-19 18:25
LZ,等腰直角三角形,斜邊10,斜邊上的高是5。
歡迎光臨 機械社區 (http://www.odgf.cn/) | Powered by Discuz! X3.4 |